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Abstract

Two new acridine derivatives bearing azacrown or azathiacrown ligand were synthesized as fluorescent chemosensors for Hg2+ and
Cd2+ in aqueous solution. Compounds 1 and 2 displayed selective CHEF (chelation enhanced fluorescence) effects with Hg2+ or Cd2+

among the metal ions examined. The practical use of these probes was demonstrated by their applications to the detection of Hg2+ and
Cd2+ ions in mammalian cells.
� 2007 Elsevier Ltd. All rights reserved.
Detection of metal ions with high specificity under phys-
iologically relevant conditions is an important aspect in the
design of fluorescent chemosensors for biological and envi-
ronmental applications.1 In particular, Hg2+ and Cd2+ are
the environmentally important metal ions due to their
detrimental effects on human health. Mercury contamina-
tion through oceanic and volcanic emission,2 gold mining,3

or solid waste incineration has been an important issue
because of its severe immunotoxic, genotoxic, and neuro-
toxic effects. Chronic cadmium exposure can cause renal
dysfunction and increased incidence of certain forms of
cancer.4 Accordingly, considerable attention has been
devoted to the development of new fluorescent chemosen-
sors for the detection of Hg2+ or Cd2+ with sufficient selec-
tivity. However, there are relatively few examples available,
which display fluorescence enhancement upon the addition
of Hg2+ or Cd2+ in aqueous solution.5,6
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Herein, we report two new acridine derivatives (1 and 2)
bearing azacrown or azathiacrown ligand as fluorescent
chemosensors for Hg2+ and Cd2+ at pH 7.4. For these
compounds, either azacrown or azathiacrown ligand was
coupled to the 4- and 5-position of acridine, in which a
relatively rigid binding pocket is generated for metal ions.
Compounds 1 and 2 displayed large CHEF (chelation
enhanced fluorescence) effects only with Hg2+ and Cd2+

among the metal ions examined. Interestingly, compound
1 displayed a large CHEF effect with Hg2+, on the other
hand, compound 2 displayed a large CHEF effect with
Cd2+. Cooperative binding from an immobilized ligand
and nitrogen on acridine may provide such selectivity.
The practical use of these probes was demonstrated by
their application to the detection of Hg2+ and Cd2+ ions
in mammalian cells.

4,5-Bis(bromomethyl)acridine 3 was prepared following
the published procedure.7 Treatment of 4,5-bis(bromo-
methyl)acridine 3 with 4,13-diaza-18-crown 6-ether or
1,10-diaza-4,7,14,17-tetrathiacyclooctadecane in anhydrous
chloroform in the presence of K2CO3 followed by purification
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Scheme 1. Synthesis of fluorescent chemosensor 1 and 2.

Fig. 2. Fluorescent changes of compound 2 (3 lM) upon the addition of
various metal ions (100 equiv) in 0.1 M HEPES (pH 7.4)-DMSO (95:5,
v/v) (excitation at 356 nm).
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on a basic alumina column using CH2Cl2–MeOH (99:1, v/v)
as eluent gave compound 18 and 29 in 84 % and 70% yields,
respectively. Both of these compounds were fully character-
ized by 1H and 13C NMR as well as high resolution mass
spectroscopy. The characterization data are presented in
the Supplementary data Scheme 1.

The perchlorate salts of Ag+, Ca2+, Cd2+, Co2+, Cs+,
Cu2+, Fe3+, Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+,
Pb2+ and Zn2+ ions were used to evaluate the metal ion
binding properties of compounds 1 and 2. Figures 1 and
2 explain the fluorescent emission changes of 1 (3 lM)
and 2 (3 lM or 2 lM), respectively, upon the addition of
various metal ions in 0.1 M HEPES (pH 7.4)-DMSO
(95:5, v/v). In the case of Pb2+, pH 7.4 was adjusted with-
out using buffer solution due to the precipitation problem
of Pb2+ in HEPES solution. Azacrown derivative 1 dis-
played a large CHEF effect with Hg2+, and a relatively
smaller CHEF effect was observed with Cd2+ (Fig. 1). On
the other hand, azathiacrown derivative 2 displayed a large
CHEF effect with Cd2+, and a relatively smaller CHEF
effect with Hg2+ (Fig. 2). There were no significant changes
when other metal ions were added to compounds 1 and 2.
The CHEF effects can be explained by two reasons. The
nitrogen on the acridine moiety can participate in the bind-
ing with Hg2+ or Cd2+, which can induce the fluorescent
Fig. 1. Fluorescent changes of compound 1 (3 lM) upon the addition of
various metal ions (100 equiv) in 0.1 M HEPES (pH 7.4)-DMSO (95:5,
v/v) (excitation at 356 nm).
increase. The fluorescence enhancement due to the interac-
tion between metal ions and nitrogen on acridine10 or the
hydrogen bonding with a nitrogen on acridine11 were also
reported. The CHEF effect with these metal ions can also
be explained by the blocking of the PET (photo-induced
electron transfer) process from the benzylic nitrogens.
The binding of an amine group with metal ions in fluoro-
phore-amine conjugates is reported to eliminate photoin-
duced electron transfer (PET).1d Therefore, the CHEF
effects are expected to be observed in these systems.

For compound 1, Hg2+ displayed a larger CHEF effect
than Cd2+ when 100 equiv of each metal ion were added.
When excess Cd2+ was added to the solution of 1, a similar
large CHEF effect was also observed (S-Fig. 1). From the
fluorescent titration experiments, the association constants
of compound 1 with Hg2+ (Fig. 3) and Cd2+ (S-Fig. 1) were
Fig. 3. Fluorescent titrations of compound 1 (3 lM) with Hg2+ in 0.1 M
HEPES (pH 7.4)-DMSO (95:5, v/v) (excitation at 356 nm).
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calculated to be 1.18 � 105 and 4.48 � 103 M�1 {errors
<10%, 0.1 M HEPES (pH 7.4)-DMSO (95:5, v/v)}, respec-
tively.12 On the other hand, for compound 2, Cd2+ dis-
played a larger CHEF effect than that of Hg2+ when
100 equiv of each metal ion was added. In a similar way,
the association constants of compound 2 with Hg2+

(Fig. 4) and Cd2+ (Fig. 5) were calculated to be >107 and
3.28 � 104 M�1 {errors <10%, 0.1 M HEPES (pH 7.4)-
DMSO (95:5, v/v)}, respectively.10 The job plots show
1:1 binding of these hosts with either Hg2+ or Cd2+. Com-
pound 2 displayed an extremely high association constant
with Hg2+, which was also preserved in the presence of
excess other metal ions (50 equiv of Cd2+ as well as
100 equiv of Ca2+, Mg2+ and Zn2+). Even though the asso-
ciation constant of 2 with Hg2+ is about >500 times larger
than that with Cd2+, the CHEF effect with Hg2+ (�6 times)
is much smaller than that with Cd2+ (�12 times). The lack
Fig. 4. Fluorescent titrations of compound 2 (3 lM) with Cd2+ in 0.1 M
HEPES (pH 7.4)-DMSO (95:5, v/v) (excitation at 356 nm).

Fig. 5. Fluorescent titrations of compound 2 (3 lM) with Hg2+ in 0.1 M
HEPES (pH 7.4)-DMSO (95:5, v/v) (excitation at 356 nm).
of an X-ray crystal structure of the complex and the broad-
ness of 1H NMR peaks in the aliphatic region prohibit a
clear explanation for this smaller CHEF effect with Hg2+.
The smaller CHEF effect may be attributed to the fact that
a PET quenching from benzylic nitrogens is still available
in 2-Hg2+. This difference may come from stronger affinity
of sulfur in 2 towards Hg2+ compared with that of oxygen
in 1 and a relatively larger cavity size of azathiacrown.
Hg2+ can possibly coordinate to central nitrogen and four
sulfur atoms. Figure 6 displays the 1H NMR changes of 2

in aromatic region when Hg2+ was added in DMSO-d6. All
the peaks of acridine moiety moved downfield, for exam-
ple, H-9 moved from 9.09 ppm to 9.49 ppm when 2 equiv
of Hg2+ was added.

The ability of compounds 1 and 2 to detect Cd2+ and
Hg2+ in mammalian cells was also studied (Fig. 7). Human
keratinocyte cell line HaCaT and human colon cancer cells
(HCT-116) were cultured in RPMI1640 and human neuro-
blastoma cell line SK-N-SH was cultured in MEM, which
were supplemented with 2 mM L-glutamine, 100 units/ml
penicillin, 100 mg/ml streptomycin, and 10% heat-inacti-
vated fetal bovine serum. The cells were treated with
50 lM of 1 and 2 for 3 h and washed three times with
PBS. Then the cells were incubated with 50–200 lM
Hg2+ or Cd2+ for 1 h. The cell cultures were washed with
PBS to remove the remaining Cd2+ and Hg2+. As shown
in Figure 7, there was no fluorescence in cells treated with
only sensor. When cells were incubated with Hg2+ or Cd2+

after adding sensors, fluorescence enhancement was
observed not only in the normal cell lines but also in the
cancer cell line. The sensor 1 displayed a large fluorescent
enhancement with Hg2+. On the other hand, sensor 2 dis-
played a significant fluorescent enhancement with Cd2+.
Even though the binding of 2 with Hg2+ is much better
than that with Cd2+, we observed a small fluorescent
change in the cell due to the relatively smaller optical
change with Hg2+.

In conclusion, we report two new acridine derivatives
bearing immobilized azacrown or azathiacrown ligand as
Fig. 6. Partial 1H NMR (250 MHz) spectra of compound 2 (3 mM) with
Hg2+ in DMSO-d6: (a) 2 only; (b) 2 + Hg2+ (0.4 equiv); (c) 2 + Hg2+

(1 equiv); (d) 2 + Hg2+ (2 equiv).



Fig. 7. (a) Image of sensor 1 only in HaCaT; (b) image of sensor 1

(50 lM) with Hg2+ (50 lM) in HaCaT; (c) image of sensor 2 only in SK-
N-SH; (d) image of sensor 2 (50 lM) with Cd2+ (50 lM) in SK-N-SH; (e)
bright-field image of sensor 2 (50 lM) with Cd2+ (50 lM) in human colon
cancer cell line HCT-116; (f) fluorescence image of (e).
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fluorescent chemosensors for Hg2+ and Cd2+ at pH 7.4.
Compounds 1 and 2 displayed large CHEF effects with
Hg2+ and Cd2+ among the metal ions examined. The asso-
ciation constants of compound 1 with Hg2+ and Cd2+ were
calculated to be 1.18 � 105 and 4.48 � 103 M�1, on the
other hand, the association constants of compound 2 with
Hg2+ and Cd2+ were calculated to be >108 and
3.28 � 104 M�1, respectively. Cooperative binding from
an immobilized ligand and nitrogen on acridine may pro-
vide such selectivity. Furthermore, we demonstrated their
applications for the detection of Hg2+ and Cd2+ ions in
mammalian cells. These new fluorescent sensors for toxic
metal ions could be beneficial for biological and environ-
mental applications.
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